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Abstract—A new hierarchic p-version cylindrical shell element based on exact mapping is presented.
Its rigid-body modes. round-off error. and convergence characteristics are investigated. [ts per-
formance in the presence of singularities is demonstrated with the help of three test problems,
namely pinched cylinder problem. Lockheed test problem 2, and cracked cylinder problem.

|. INTRODUCTION

Structural shells arc widely used in a broad spectrum of industries, e.g. aerospace. auto-
motive. powcer gencration. railroad. ship building, and chemical. Very often the usage is
characterized by irregularities in the form of discontinuities, complex loading and support
conditions over the surface and at the edges.

In the design of such shells it is necessary to account for the aforementioned irregu-
laritics, which may, somcetimes, become the source of singularitics in the stress ficld and
hence the potential seat for crack initiation and propagation, affecting the fatigue life of
the shell under cyclic loading conditions.

The sources of singularitics can be classified under three headings (Basu and Peano,
1981 ; Lukasicwicz, 1976).

(1) Geomelric: re-entrant corners, cracks, cutouts with sharp corners, discontinuitics
in curvature and thickness, presence of stiffeners, mixed boundary conditions, and the like.

(2) Louding: concentrated sources over the surface and at the edges, line sources over
the surface, and sudden changes in the intensity of the external sources.

(3) Material: sudden changes in material properties, as in the case of laminated
materials.

As the stress gradients in the vicinity of a singular point are very steep, the p-version
of the finite clement method is expected to perform very well for modeling such problems
(Basu ¢f af., 1977). The main objective of this paper is to develop cylindrical shell elements
based on the p-version of FEM and to study their performance in the case of cylindrical
shells with polygonal cutouts and cracks, as well as in the presence of concentrated loads.

The #-version, which is normally based upon Lagrange polynomial interpolation
through evenly distributed nodal points, is less reliable at the boundaries than in the interior
regions. However in the p-version, the roots of Legendre polynomials, unlike the roots of
Lagrange polynomials, are not evenly distributed in the interval — 1 < x < 1 but rather are
closely grouped near the endpoints (Basu, 1986). Thus at the end points, very steep strain
gradicnts can be modeled effectively when integrals of Legendre polynomials are used to
create the basis functions. These polynomials are able to oscillate with increased frequency
ncar the endpoints and thus are better suited for approximating singular behavior which
occurs at these points than with uniform /-version meshes. In modeling the singular
behavior caused by sharp cracks, one could however use a quarter-point element in the
context of the p-version, to represent the strength of singularity exactly.

[t has been demonstrated by numerical experimentation and analytical reasoning that
the rate of convergence of the p-version is twice the rate for the A-version when severe
corner singularitics are present, and the number of degrees of freedom is increased by
uniform or quasi-uniform mesh refinement (Basu and Peano, 198! ; Cheng. 1986 ; Peano
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et al.. 1978). Moreover. the superior performance of the p-version in modeling transversely
loaded plates with polygonal cutouts. and the classical rhombic plate problem is evidenced
in Basu er al. (1977) and Basu and Peano (1981).

In the conventional A-version, there are three distinct approaches to the finite element
representation of thin shell structures (Ashwell and Gallagher. {976} : (i) in “faceted” form
with flat elements; (ii) by means of degenerated three-dimensional (solid) elements: and
(iii) with elements formulated on the basis of curved shelt theory. The shortcomings and
associated difficulties of “faceted” elements are well known.

Corresponding to the six displacement components of a cylindrical shell, that is u. ¢,
w, 0., 0., 8., there should be six rigid-body modes. and hence the element stiffness matrix
should have six zero eigenvalues related to these modes. Different schemes have been put
forward by Cantin (1970) and others for the problem of ensuring rigid-body displacements
in shell elements. In the development of a general shell element of arbitrary thickness and
geometry that reproduced the rigid-body motions exactly, Hansen and Heppler (1985) used
strain—displacement relationships of the Mindlin type, based on a curvilinear coordinate
system.

2. HIERARCHICAL SHELL ELEMENTS

2.1, Integrals of Legendre shape functions
The shape functions used in this study are bascd on the integrals of Legendre
polynomials. The lowest order shape functions (p = 1) being expressed as

AN
N, = +s,c,k)4( + 11t ) 0

in which subscript k" refers to the four vertex nodes of the standard clement, as shown in
Fig. L. For each higher p-level four more edge shape functions (Basu and Peano, 1981), are
required to be added as

(1+mF (&) foredgesy = +1

(1£&5)F,(n) foredgess = +1 {2
where
= [
Feo= 0 ®
< -1

in which P,(¢) is the Legendre polynomial defined by the Rodrigues formulu
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Fig. 1. Blend mapping from standard domain (o real domain.
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The completeness requirement is satisfied by introducing internal nodes for p > 4 as
F(E)F,{n) with the requirement that i+j = p and that i, j > 2 (Basu and Peano, 1981). In
the case of two-dimensional problems, these shape functions are not exactly orthogonal in
energy norm, unlike the case of one-dimensional problems, but will be nearly so and hence
are expected to give well-conditioned stiffness matrices.

2.2. Blend mapping

[n order to conform better to curved geometries and thus reduce the discretization
error. curved finite elements have been widely used in recent years. The most well known
of such elements are the parametric (iso- or sub-) family of elements.

For mathematical convenience, in general, the shape functions are defined on standard
domains (e.g. triangles, squares, cubes, etc.) and are mapped into the real domain by
suitable coordinate transformations. The most commonly used mappings are linear and
quadratic parametric mappings which have served the A-version well. This is because, in
general, the mapping does not introduce large distortions in the h-version, and all piecewise
smooth boundaries can be approximated by a sufficient number of piccewise quadratic
pelynomials.

In the p-version, the size of the elements is usually large and hence the probability of
distortions is more, especially if higher order parametric mapping is used, unless the
boundary of an clement is represented by a polynomial in the parametric form. In the case
of non-polynomiual boundarics, like circles and cllipses, parametric mapping may not work
at alk.

In the case of the proposed clement, only the four corners of a quadrilateral clement
will be referred to in mapping from the standard to the real domain. It is therefore necessary
to find the mapping function which will exactly map the standard element to the sides of
the element including the four corner nodes by making use of the exact geometric parameters
of the curved boundaries (Fig. 1). This can be achieved by constructing blend mapping
functions (Gordon, 1971}, As a special case, the mapping function for an clement bounded
by lines x = const. and § = const. can be expressed as

K]
x= 3 M0
k=1
4

0=Y Mo, )

k=1

M(En) = 51+ EE)(T+nme).

2.3. Formulation of element stiffness matrix
As per standard displacement formulation, the element stiffness matrix will be
expressed as

K] + JJ [B]"[D](B] dA. (6)

2.3.1. Strain matrix [B]. The following strain-displacement relationships are used in
evaluating the stiffness matrix
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2.3.20 Elasticity marrix [D]. The constitutive relationships for an clastic isotropic
material, in the absence of initial stresses and strains, can be expressed as
N, K, K, 00 0 0 0 0[e
Ny K. K, 0 0 ¢ 0 0 0 £y
Ny 6 0 A 0 0 0 0 0 0
M, 6 0 0 Dy D, 0 0 0 Lo
My 510 0 0o D, D, 0 0 0]
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Q. 0o 0 o 0o ¢ 0o S 0 ¢,
Qs o 0 0 0 0 0 0 S
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o= Dz (8}

in which D is the constitutive matrix, with
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The N*, M*and @ represent the membrane, flexural, and transverse shear stress resultants
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per unit length of the shell. It may be noted that eqns (7) and (8) include the effect of
transverse shear deformations, and the inverse of the factor « is the so-called shear correction
factor.

After the shape functions are substituted into matrix [B], the element stiffness matrix
can be evaluated from eqn (6). A typical submatrix of [K*] linking nodes / and j can then
be evaluated with the expression

mz=ffmrmdeA

in which

dd4=Rdfdx=RdetJdSdy

det J = determinant of the Jacobian matrix.

3. COMPUTER IMPLEMENTATION

In the program, SHLPV, developed for this study, up to a maximum of 12 x 12 Gauss
point rules for numerical quadrature have been built in. The susceptibility of a matrix to
round-ofTerrors in the solution of a simultancous equation is characterized by the condition
number (CN). It can be shown that the maximum number of digits lost in numerical
operations involving a given matrix is not greater than log (CN).

As a result, the shape functions that perform better numerically are the ones that will
result in a stiffness matrix that has a smaller condition number. In general, the stilTness
matrix [R] will be ideally well-conditioned if CA is closc to one, and ill-conditioned when
CN is significantly greater than one. In order to calculate the CN of the stiffness matrix one
has to extract the largest and smallest cigenvalues of the following cquation. In this study
the Jacobi method is adopted for this purpose

(K] =AM {u} = 0. )

The condition number can then be defined as CN = A |/ | 4min| @nd the loss of significant
digits wilt be log (CN), approximately.

In the case of shell clements with a central angle of 90°, a radius 0 4.953 in., a Poisson’s
ratio of 0.3125, a Young's modulus of 10.5 x 10® and R/t ratios of 16.5, 52.69, and 319.96,
the variation of the loss of significant digits with p-level are shown in Fig. 2. It can be seen
that the maximum number of digits lost lies between 2 for p = 1-5, 6, or 7 for a thick, thin
and very thin shell when p = 8. It may be noted that for p = 3, the number of digits lost
remains virtually unchanged.
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O R/1=52.469 (THIN
S‘z O R/t=319.96 ( VERY THIN 1
2 3 7 ]

4 []
P-LEVEL

Fig. 2. Condition number of cylindrical shell element (R = 4.953 in., v = 0.3125, E = 10.5x 10, -
central angle = 907).
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Table 1. Eigenvalues of cylindnical thin
shell element when p = 8

Eigenvalue
A 0.77594E-10
A 0.56157E—-09
A 0.36391E-09
iy 0.42362E-02
Ay 0.79867E — 04
N 0.18612E~09
As 0.32015E+02
Ax 0.35772E <02
Ay 0.39425E =02
! 0.139{8E +~ 0N

“Tra T

The first nine eigenvalues for a cylindrical shell element which is a quarter-cylinder
with R =4.953 in., r = 0.094 in. are shown in Table 1. It may be noted that the first six
eigenvalues are small enough, compared to the remaining eigenvalues, to be treated as zero
and hence the proposed element satisfies the rigid-body motion requirements.

4. NUMERICAL RESULTS

4.1. Pinched cvlindrical shell

Two problems are considered, one a thin shell with R/¢ = 53, and the other a very thin
shell with Ryt = 320. The first shell was analyzed by Bogner e al. (1967). Recently this
problem was solved by Hansen and Heppler (1985) and Carpenter ¢f «f. (1986). It has a
radius of 4.953 in., a thickness of 0.094 in., and a pinch load of 100 Ib. The second shell
has the same radius as the first but its thickness is taken as 0.01548 in., and its pinch load
is 0.1 1b. For both shells, the Young's modulus is taken as 10.5 x 10° psi and Poisson’s ratio
as 0.3125. Because of the symmetry only onc octant of the shell, as shown in Fig. 3, 1s
considered.

In the case of the first shell the radial deflection under the point load based on thin
shell cquations is 01084 in. (Timoshenko and Woimnowsky-Kricger, 1959). An ABAQUS

R=4.953 in, t=0.094(or 0.01548) in
E=10.5x10%, ,=0.3125
P =100(or 0.1) Ibf

0.

[] 0.5 | ﬁ 0.5 am

|-Eleaent 2-Elenents 4-Elenents

~
wn
=

A

Fig. 3. An octant of the pinched cylinder problem and mesh refinement.
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Table 2. Deflection (in.) under point load for thin pinched cylinder problem

Ashwell and Thomas and Cantin and
Cantin Sabir Gallagher Bogner er al. Clough
Mesh (1970) (1972) (1975) (1967) Mesh (1968)
Ix1 0.104(20) 0.0048(19) 0.0025(48)
Ix2 0.0802(72) Ix3 0.0297(48)
x4 0.1106(50) 0.1107(67) 0.1087(120) Ix$ 0.0769(72)
1x8 0.1119(131) 1x7 0.0987(96)
2x2 0.0931(54) 0.1103(45) 0.0808(108) Ix9 0.1057(120)
4x4 0.1126(150) 0.1129(125) 2x9 0.1073(180)
6x6 0.1137(294) 0.1135(245) Ixd49 0.1128(1200)
8x8 0.1139(486) 0.1137(405)
10x10 0.1139(726) 0.1137(605)
$x5 0.1135(390) ABAQUS S8R element
10x 10 0.1115(540) ABAQUS S4R element
1x1 0.1126(110) p = 8 by p-version
2x2 0.1134(125) p = S by p-version

Figures in parentheses give NDOF.

(1985) solution based on a [5 x 5} mesh of S8R elements is found to be 0.1135 in. and with
a [10 x 10} mesh of S4R elements the value is 0.1115 in. The results for this problem
published by different authors and those by the p-version (i.e. present study) are shown in
Table 2. The importance of rigid-body modcs is evident from the results of Cantin and
Clough (1968) with a [3 x 49] mesh. A deflection of 0.1128 in. was obtained by them when
the rigid-body modes were included and the value was 0.05583 in. when the nigid-body
modes were excluded. The p-version result is 0.1126 in. with a single eighth-order element.

Table 3 shows the deflection (in.) under the pinch load for the very thin pinched
cylinder problem. The best available analytical result is 0.02439 in. (Ashwell and Gallagher,
1976). An ABAQUS (1985) solution based on a [5 x 5] mesh of S8R clements is found to
be 0.02453 in. and with a [10 x 10] mesh of S4R elements 0.02405 in. The p-version result
with a single cighth-order element (NDOF = 110) is 0.024413 in.

The convergence characteristics of maximum deflection and total potential energy for
a single element model of the thin cylinder, as the p-level is increased from four to nine, are
shown in Figs 4 and 5. With just one element the results appear to converge at a p-level
of 6.

The effect of mesh refinement, keeping the p-level fixed at 5, is shown in Table 4. The
meshes used for this purpose are graded towards the point load, as shown in Fig. 3. With
one element and p = 9, the maximum deflection is 0.1130 in. Whereas in Table 4 the graded
four-element model with p = 5 gives a value of 0.1134 in. Thercfore, a graded mesh with a
sufficiently high p-level leads to better results with somewhat fewer degrees of freedom.

To achicve the same degree of accuracy, the CPU time requirements of the p-version
solution with one element was found to be 13.86 s as compared to 29.43 s with ABAQUS

Table 3. Deflection (in.) under point load for very thin pinched cylinder problem

Ashwell and Sabir Thomas and Gallagher Cantin and Clough Sabir and Lock
Mesh (1972) (1975) (1968) (1972)
Ixt 0.2301(20) 0.00003(19) 0.00001(24) 0.00001(20)
[x2 0.01582(35)
x4 0.02403(50) 0.02327(67) 0.00074(64) 0.00063(50)
Ix6 0.02440(99)
Ix8 0.02406(90) 0.02467(131) 0.00700(108) 0.00691(90)
2x8 0.02414(135) 0.00699(162) 0.00694(135)
Ix8 0.02418(180) 0.00699(216) 0.00696(180)
8x8 0.02431(405) 0.00708(486) 0.00706(409)
5x5 0.02453(390) ABAQUS S8R clement
1ox10 0.02405(540) ABAQUS S4R clement
Ix1 0.02441(110) p = 8 by p-version

Figures in parentheses give NDOF.
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based on the {10 x 10] S4R model and 26.69 s by the [3 x 5] S8R clement. These runs were
made on it VAX-8800 computer. Itis expected that more spectacular savings in CPU time
can be achieved with the p-version iff a more eflicient equation solver and quadrature
algorithm are used. Tt is worthwhile to note that to achieve the same level of accuracy, a
single fifth-order clement requires 13.86 s of CPU ume whereas 49 quadratic clements
require 65.77 s of CPU time when both runs are made with SHLPV.,

4.2. Lockheed test problem 2

A problem with a cylindrical shell with two symmetrically located rectangular cutouts,
subjected to axial displacement, was solved. This problem was chosen because of the high
quality of the elements used and the availability of well-documented solutions by means of
other computer codes (Szabo et al., 1976 Rossow et al.. 1975).

The most challenging aspect of this problem is that the re-entrant corners of the cutout
are singular points, that is, an elastic analysis will give infinite stresses at these points. The
question is whether approximations based on a few high order p-version finite elements can
perform as well as approximations bascd on a large number of lower order conventionul

Table 4. Results of mesh refinement with p = 3

Number of mesh

clements NDOF P.E. W (in)
1 34 —-0.138E+ 1 0.110131
2 70 —0.139E+1 0411125
4 125 —0142E+ 1 0.113417
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PLANES OF SYMMETRY

SECTION 688

Fig. 6. Cylinder with cutouts (Szabo et al., 1976).

finite clements in representing the state of stress in the neighborhood of the re-entrant
corners.

The details of the problem, known as “Lockheed test problem 27 are shown in
Fig. 6. The boundary conditions at the ends of the shell are e =w =0 =0, =0 and
u = const. = 0.2x 10 *in. Because of symmetry, only one octant of the structure has to be
modcled. The problem was solved with the program SHLPV by increasing the number of
clements from 3 to § when p =9, The solution appeared to converge with p =9 and a
three-clement mesh, as shown in Fig. 7.

In Figs 7-12, the results of the p-version are compared with those of the program
TRISHL developed by the National Aeronautical Estublishment of Canada and the Con-
straint Mcthod program developed at Washington University.

The five-clement SHLPV mesh used in the analysis of the problem is inset in Figs 7-
12. The 100-clement TRISHL mesh and the ten-clement Constraint Method mesh are
shown in Fig. 13. In Table 5, a comparison is provided of the number of elements and the
degrees of freedom used in the application of several computer programs to the test problem.

3.
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Fig. 7. Normal displacement along centerline of shell (x = 4.5 in.).
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Particular mention should be made of the drastic reduction in the number of finite elements
(three elements) required by the p-version program, SHLPV. The required number of
clements reported in the published literature ranged from 10 to 476 and the NDOF from
500 to 2457. The three-clement (NDOF = 340) SHLPV model gave very good approxi-
mations of both deflections and stresses. Moreover, the CPU time required was found to
be highly competitive with thosc reported by others.

The greatest discrepancics appearing between the Constraint Method, TRISHL, and
SHLPV results are shown in Fig. 9. The magnitude of the displacements by the Constraint
Mcthod shown in this figure are, however, relatively small, actually more than two orders
of magnitude smaller than the largest computed displacement. The results of SHLPV appear
to agree more closely with those of TRISHL. In Figs 10 12, the axial forees and bending
moments cxisting in the shell in the vicinity of the re-entrant corner are shown. It may be
noted that multi-valued stress predictions are shown for the re-entrant corner, depending
upon the clement being considered.

Since the SHLPV program is based on shear deformation theory, the normal dis-
placements are a little larger than those by TRISHL and the Constraint Mcthod. The
bending moments agree very well everywhere including the re-entrant corner.

4.3, Elastic through-wall cracked cylinder
Figure 14 shows a cylinder containing a circumferential through-wall crack with a total
included angle of 20, R being the mean radius and ¢ the wall thickness. The crack length

-2.6; —
V TRISHL
O CONSTRAINT rETHOD
-2.0¢ [ SHLPV(P=9, 3 ELEMENTS)
— SHLPV(P=9, 5 ELEMENTS)
b .
> -1.H w0’
4 |9
2
3 3
4
=
493 .
z
*-5 1 4 3 [

3
X CINCHD
Fig. 12. Axial bending moments at 0 = 22.5 .
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Fig. 13 One hundred-clement TRISHL mesh and ten-clement Constraint Mcethod mesh (Rossow
eful., 1975).

(2a) tn the circumferential direction is then 20R. The loading is considered to be due to a
remotely applied axial tensile force P. The Virtual Crack Extension Method was employed
to calculate the stress intensity factor, K, using the relationship: G = K/ E, where G is the
cnergy release rate. £ was taken to be 0.2 x 10” psi, R = 30 in. and Poisson’s ratio v = 0.3,
For cylinders under tension loading, K cun be expressed as

K= @Y F(O, Rit, v). (10

2Rt

Parameter £ s variously described as the shape tactor, the non-dimensional geometric
dependent coceflicient of the stress intensity factor or the geometrical magnification factor.

Table S, Lockheed test problem 20 comparison of key computational parameters

Number of Degrees of
Computer code Source references clements freedom
SHELL9 Gulf General Atomic, Inc. 476 2457
STAGS Lockheed Missiles & Space Corp. 342 1437
REXBAT Lockheed Missiles & Space Corp. 241 1125
TRISHL National Acronautical Establishment, Canada 100 637
Constraint method Washington University 1o 500
(6 6 7 case)
SHLPV p-version Vanderbilt University 3 40

(p=9)
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Fig. 14, Through-wall cracked cylinder under tension.

The value of K for a fairly broad range of values of # and R/t with v = 0.3 have been
presented by Folias (1967), Erdogan and Delale (1979), Sanders (1982), Kumar ¢t al.
(1984), and Zahoor (1985) using different methods. For R/t = 10 and 20 = 90, the SHLPV
model with p = 8, and four clements gives F = 1.74020, which is in excellent agreement
with the F value of 1.72656 obtained using the short crack expression of Sanders (1982).
For 8/t =5 and 20 = 90", the F valuc computed by the sume SHLPV model is 1.52953
which again is in very good agreement with the result of 1.56254 obtained by Zahoor (1985).
The third case examined corresponds to Rjr = 20 and 20 = 90", In this case the same
SHLPYV model as above gives /' = 2.10615, which compares very well again with the solution
of 2.07495 obtained by Zahoor (1985) and the solution of 1.974 obtained by Kumar ¢t al.
(1984). Monotonic convergence of the shape factor, F, as the p-level with a four-clement
SHLPV model is increased from | to 8 is shown in Fig. 15, Figure 16 shows the excellent
agreement of Fvalues for different crack lengths obtained by SHLPV and those by Sunders
(1982) and Zahoor (1985).

In obtaining the value of K Kumar er al. (1984) used the software ADINA. The finite
clement model consisted of 242 nine-noded thin shell elements and 989 nodes. On the other
hand to achieve the same degree of accuracy, SHLPV required only four cighth-order
clements involving 153 nodes and 555 degrees of {reedom.

Felviny

< [ O 7 ]
P-LEVEL

Fig. 15. Values of F with different p-levels (Rt = 10, 20 = 30 ).
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Fig. 16. Companson of clastic solutions for a through-wall cracked cylinder under tension: R ¢ = S,
10. 20.

5. CONCLUSIONS

Hierarchic shell elements of high order using exact blend mapping satisfies all the
requirements of constant strain states and rigid-body modes. The stiffness matrix bascd on
the proposed clement is well conditioned even when very high fevels of p are used.

In the case of the pinched shell test problem, modeling of one octant of the shell with
just once clement of ninth order leads to a very accurate value for maximum deflection
(0.113 in). Although a graded model consisting of four fifth-order clements leads to a slightly
better value for the maximum deflection (01134 in)), the SHLPV models are found to be
computationally more cflicient than ABAQUS models.

In the case of the Lockheed test problem, the proposed p-version elements proved to
be very eftictent both in terms of accuracy and computational efficiency. To achicve the
same order of accuracy in displacements and stresses, the problem was solved with three
and five p-version elements as compared to ten elements by the Constraint Method and 100
clements by TRISHL.

In the case of the cracked shell problem it is found that reliable values of the stress
intensity factor can be obtained with only a four-clement model.

The proposed p-version shell element is therefore a worthy alternative to the existing
cylindrical shell elements.
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